home *** CD-ROM | disk | FTP | other *** search
- # Copyright (c) 1985 Regents of the University of California.
- # All rights reserved.
- #
- # Redistribution and use in source and binary forms, with or without
- # modification, are permitted provided that the following conditions
- # are met:
- # 1. Redistributions of source code must retain the above copyright
- # notice, this list of conditions and the following disclaimer.
- # 2. Redistributions in binary form must reproduce the above copyright
- # notice, this list of conditions and the following disclaimer in the
- # documentation and/or other materials provided with the distribution.
- # 3. All advertising materials mentioning features or use of this software
- # must display the following acknowledgement:
- # This product includes software developed by the University of
- # California, Berkeley and its contributors.
- # 4. Neither the name of the University nor the names of its contributors
- # may be used to endorse or promote products derived from this software
- # without specific prior written permission.
- #
- # THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
- # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- # ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
- # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- # OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- # HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- # OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- # SUCH DAMAGE.
- #
- # @(#)argred.s 5.4 (Berkeley) 10/9/90
- #
- .data
- .align 2
- _sccsid:
- .asciz "@(#)argred.s 1.1 (Berkeley) 8/21/85; 5.4 (ucb.elefunt) 10/9/90"
-
- # libm$argred implements Bob Corbett's argument reduction and
- # libm$sincos implements Peter Tang's double precision sin/cos.
- #
- # Note: The two entry points libm$argred and libm$sincos are meant
- # to be used only by _sin, _cos and _tan.
- #
- # method: true range reduction to [-pi/4,pi/4], P. Tang & B. Corbett
- # S. McDonald, April 4, 1985
- #
- .globl libm$argred
- .globl libm$sincos
- .text
- .align 1
-
- libm$argred:
- #
- # Compare the argument with the largest possible that can
- # be reduced by table lookup. r3 := |x| will be used in table_lookup .
- #
- movd r0,r3
- bgeq abs1
- mnegd r3,r3
- abs1:
- cmpd r3,$0d+4.55530934770520019583e+01
- blss small_arg
- jsb trigred
- rsb
- small_arg:
- jsb table_lookup
- rsb
- #
- # At this point,
- # r0 contains the quadrant number, 0, 1, 2, or 3;
- # r2/r1 contains the reduced argument as a D-format number;
- # r3 contains a F-format extension to the reduced argument;
- # r4 contains a 0 or 1 corresponding to a sin or cos entry.
- #
- libm$sincos:
- #
- # Compensate for a cosine entry by adding one to the quadrant number.
- #
- addl2 r4,r0
- #
- # Polyd clobbers r5-r0 ; save X in r7/r6 .
- # This can be avoided by rewriting trigred .
- #
- movd r1,r6
- #
- # Likewise, save alpha in r8 .
- # This can be avoided by rewriting trigred .
- #
- movf r3,r8
- #
- # Odd or even quadrant? cosine if odd, sine otherwise.
- # Save floor(quadrant/2) in r9 ; it determines the final sign.
- #
- rotl $-1,r0,r9
- blss cosine
- sine:
- muld2 r1,r1 # Xsq = X * X
- cmpw $0x2480,r1 # [zl] Xsq > 2^-56?
- blss 1f # [zl] yes, go ahead and do polyd
- clrq r1 # [zl] work around 11/780 FPA polyd bug
- 1:
- polyd r1,$7,sin_coef # Q = P(Xsq) , of deg 7
- mulf3 $0f3.0,r8,r4 # beta = 3 * alpha
- mulf2 r0,r4 # beta = Q * beta
- addf2 r8,r4 # beta = alpha + beta
- muld2 r6,r0 # S(X) = X * Q
- # cvtfd r4,r4 ... r5 = 0 after a polyd.
- addd2 r4,r0 # S(X) = beta + S(X)
- addd2 r6,r0 # S(X) = X + S(X)
- brb done
- cosine:
- muld2 r6,r6 # Xsq = X * X
- beql zero_arg
- mulf2 r1,r8 # beta = X * alpha
- polyd r6,$7,cos_coef # Q = P'(Xsq) , of deg 7
- subd3 r0,r8,r0 # beta = beta - Q
- subw2 $0x80,r6 # Xsq = Xsq / 2
- addd2 r0,r6 # Xsq = Xsq + beta
- zero_arg:
- subd3 r6,$0d1.0,r0 # C(X) = 1 - Xsq
- done:
- blbc r9,even
- mnegd r0,r0
- even:
- rsb
-
- .data
- .align 2
-
- sin_coef:
- .double 0d-7.53080332264191085773e-13 # s7 = 2^-29 -1.a7f2504ffc49f8..
- .double 0d+1.60573519267703489121e-10 # s6 = 2^-21 1.611adaede473c8..
- .double 0d-2.50520965150706067211e-08 # s5 = 2^-1a -1.ae644921ed8382..
- .double 0d+2.75573191800593885716e-06 # s4 = 2^-13 1.71de3a4b884278..
- .double 0d-1.98412698411850507950e-04 # s3 = 2^-0d -1.a01a01a0125e7d..
- .double 0d+8.33333333333325688985e-03 # s2 = 2^-07 1.11111111110e50
- .double 0d-1.66666666666666664354e-01 # s1 = 2^-03 -1.55555555555554
- .double 0d+0.00000000000000000000e+00 # s0 = 0
-
- cos_coef:
- .double 0d-1.13006966202629430300e-11 # s7 = 2^-25 -1.8D9BA04D1374BE..
- .double 0d+2.08746646574796004700e-09 # s6 = 2^-1D 1.1EE632650350BA..
- .double 0d-2.75573073031284417300e-07 # s5 = 2^-16 -1.27E4F31411719E..
- .double 0d+2.48015872682668025200e-05 # s4 = 2^-10 1.A01A0196B902E8..
- .double 0d-1.38888888888464709200e-03 # s3 = 2^-0A -1.6C16C16C11FACE..
- .double 0d+4.16666666666664761400e-02 # s2 = 2^-05 1.5555555555539E
- .double 0d+0.00000000000000000000e+00 # s1 = 0
- .double 0d+0.00000000000000000000e+00 # s0 = 0
-
- #
- # Multiples of pi/2 expressed as the sum of three doubles,
- #
- # trailing: n * pi/2 , n = 0, 1, 2, ..., 29
- # trailing[n] ,
- #
- # middle: n * pi/2 , n = 0, 1, 2, ..., 29
- # middle[n] ,
- #
- # leading: n * pi/2 , n = 0, 1, 2, ..., 29
- # leading[n] ,
- #
- # where
- # leading[n] := (n * pi/2) rounded,
- # middle[n] := (n * pi/2 - leading[n]) rounded,
- # trailing[n] := (( n * pi/2 - leading[n]) - middle[n]) rounded .
-
- trailing:
- .double 0d+0.00000000000000000000e+00 # 0 * pi/2 trailing
- .double 0d+4.33590506506189049611e-35 # 1 * pi/2 trailing
- .double 0d+8.67181013012378099223e-35 # 2 * pi/2 trailing
- .double 0d+1.30077151951856714215e-34 # 3 * pi/2 trailing
- .double 0d+1.73436202602475619845e-34 # 4 * pi/2 trailing
- .double 0d-1.68390735624352669192e-34 # 5 * pi/2 trailing
- .double 0d+2.60154303903713428430e-34 # 6 * pi/2 trailing
- .double 0d-8.16726343231148352150e-35 # 7 * pi/2 trailing
- .double 0d+3.46872405204951239689e-34 # 8 * pi/2 trailing
- .double 0d+3.90231455855570147991e-34 # 9 * pi/2 trailing
- .double 0d-3.36781471248705338384e-34 # 10 * pi/2 trailing
- .double 0d-1.06379439835298071785e-33 # 11 * pi/2 trailing
- .double 0d+5.20308607807426856861e-34 # 12 * pi/2 trailing
- .double 0d+5.63667658458045770509e-34 # 13 * pi/2 trailing
- .double 0d-1.63345268646229670430e-34 # 14 * pi/2 trailing
- .double 0d-1.19986217995610764801e-34 # 15 * pi/2 trailing
- .double 0d+6.93744810409902479378e-34 # 16 * pi/2 trailing
- .double 0d-8.03640094449267300110e-34 # 17 * pi/2 trailing
- .double 0d+7.80462911711140295982e-34 # 18 * pi/2 trailing
- .double 0d-7.16921993148029483506e-34 # 19 * pi/2 trailing
- .double 0d-6.73562942497410676769e-34 # 20 * pi/2 trailing
- .double 0d-6.30203891846791677593e-34 # 21 * pi/2 trailing
- .double 0d-2.12758879670596143570e-33 # 22 * pi/2 trailing
- .double 0d+2.53800212047402350390e-33 # 23 * pi/2 trailing
- .double 0d+1.04061721561485371372e-33 # 24 * pi/2 trailing
- .double 0d+6.11729905311472319056e-32 # 25 * pi/2 trailing
- .double 0d+1.12733531691609154102e-33 # 26 * pi/2 trailing
- .double 0d-3.70049587943078297272e-34 # 27 * pi/2 trailing
- .double 0d-3.26690537292459340860e-34 # 28 * pi/2 trailing
- .double 0d-1.14812616507957271361e-34 # 29 * pi/2 trailing
-
- middle:
- .double 0d+0.00000000000000000000e+00 # 0 * pi/2 middle
- .double 0d+5.72118872610983179676e-18 # 1 * pi/2 middle
- .double 0d+1.14423774522196635935e-17 # 2 * pi/2 middle
- .double 0d-3.83475850529283316309e-17 # 3 * pi/2 middle
- .double 0d+2.28847549044393271871e-17 # 4 * pi/2 middle
- .double 0d-2.69052076007086676522e-17 # 5 * pi/2 middle
- .double 0d-7.66951701058566632618e-17 # 6 * pi/2 middle
- .double 0d-1.54628301484890040587e-17 # 7 * pi/2 middle
- .double 0d+4.57695098088786543741e-17 # 8 * pi/2 middle
- .double 0d+1.07001849766246313192e-16 # 9 * pi/2 middle
- .double 0d-5.38104152014173353044e-17 # 10 * pi/2 middle
- .double 0d-2.14622680169080983801e-16 # 11 * pi/2 middle
- .double 0d-1.53390340211713326524e-16 # 12 * pi/2 middle
- .double 0d-9.21580002543456677056e-17 # 13 * pi/2 middle
- .double 0d-3.09256602969780081173e-17 # 14 * pi/2 middle
- .double 0d+3.03066796603896507006e-17 # 15 * pi/2 middle
- .double 0d+9.15390196177573087482e-17 # 16 * pi/2 middle
- .double 0d+1.52771359575124969107e-16 # 17 * pi/2 middle
- .double 0d+2.14003699532492626384e-16 # 18 * pi/2 middle
- .double 0d-1.68853170360202329427e-16 # 19 * pi/2 middle
- .double 0d-1.07620830402834670609e-16 # 20 * pi/2 middle
- .double 0d+3.97700719404595604379e-16 # 21 * pi/2 middle
- .double 0d-4.29245360338161967602e-16 # 22 * pi/2 middle
- .double 0d-3.68013020380794313406e-16 # 23 * pi/2 middle
- .double 0d-3.06780680423426653047e-16 # 24 * pi/2 middle
- .double 0d-2.45548340466059054318e-16 # 25 * pi/2 middle
- .double 0d-1.84316000508691335411e-16 # 26 * pi/2 middle
- .double 0d-1.23083660551323675053e-16 # 27 * pi/2 middle
- .double 0d-6.18513205939560162346e-17 # 28 * pi/2 middle
- .double 0d-6.18980636588357585202e-19 # 29 * pi/2 middle
-
- leading:
- .double 0d+0.00000000000000000000e+00 # 0 * pi/2 leading
- .double 0d+1.57079632679489661351e+00 # 1 * pi/2 leading
- .double 0d+3.14159265358979322702e+00 # 2 * pi/2 leading
- .double 0d+4.71238898038468989604e+00 # 3 * pi/2 leading
- .double 0d+6.28318530717958645404e+00 # 4 * pi/2 leading
- .double 0d+7.85398163397448312306e+00 # 5 * pi/2 leading
- .double 0d+9.42477796076937979208e+00 # 6 * pi/2 leading
- .double 0d+1.09955742875642763501e+01 # 7 * pi/2 leading
- .double 0d+1.25663706143591729081e+01 # 8 * pi/2 leading
- .double 0d+1.41371669411540694661e+01 # 9 * pi/2 leading
- .double 0d+1.57079632679489662461e+01 # 10 * pi/2 leading
- .double 0d+1.72787595947438630262e+01 # 11 * pi/2 leading
- .double 0d+1.88495559215387595842e+01 # 12 * pi/2 leading
- .double 0d+2.04203522483336561422e+01 # 13 * pi/2 leading
- .double 0d+2.19911485751285527002e+01 # 14 * pi/2 leading
- .double 0d+2.35619449019234492582e+01 # 15 * pi/2 leading
- .double 0d+2.51327412287183458162e+01 # 16 * pi/2 leading
- .double 0d+2.67035375555132423742e+01 # 17 * pi/2 leading
- .double 0d+2.82743338823081389322e+01 # 18 * pi/2 leading
- .double 0d+2.98451302091030359342e+01 # 19 * pi/2 leading
- .double 0d+3.14159265358979324922e+01 # 20 * pi/2 leading
- .double 0d+3.29867228626928286062e+01 # 21 * pi/2 leading
- .double 0d+3.45575191894877260523e+01 # 22 * pi/2 leading
- .double 0d+3.61283155162826226103e+01 # 23 * pi/2 leading
- .double 0d+3.76991118430775191683e+01 # 24 * pi/2 leading
- .double 0d+3.92699081698724157263e+01 # 25 * pi/2 leading
- .double 0d+4.08407044966673122843e+01 # 26 * pi/2 leading
- .double 0d+4.24115008234622088423e+01 # 27 * pi/2 leading
- .double 0d+4.39822971502571054003e+01 # 28 * pi/2 leading
- .double 0d+4.55530934770520019583e+01 # 29 * pi/2 leading
-
- twoOverPi:
- .double 0d+6.36619772367581343076e-01
- .text
- .align 1
-
- table_lookup:
- muld3 r3,twoOverPi,r0
- cvtrdl r0,r0 # n = nearest int to ((2/pi)*|x|) rnded
- mull3 $8,r0,r5
- subd2 leading(r5),r3 # p = (|x| - leading n*pi/2) exactly
- subd3 middle(r5),r3,r1 # q = (p - middle n*pi/2) rounded
- subd2 r1,r3 # r = (p - q)
- subd2 middle(r5),r3 # r = r - middle n*pi/2
- subd2 trailing(r5),r3 # r = r - trailing n*pi/2 rounded
- #
- # If the original argument was negative,
- # negate the reduce argument and
- # adjust the octant/quadrant number.
- #
- tstw 4(ap)
- bgeq abs2
- mnegf r1,r1
- mnegf r3,r3
- # subb3 r0,$8,r0 ...used for pi/4 reduction -S.McD
- subb3 r0,$4,r0
- abs2:
- #
- # Clear all unneeded octant/quadrant bits.
- #
- # bicb2 $0xf8,r0 ...used for pi/4 reduction -S.McD
- bicb2 $0xfc,r0
- rsb
- #
- # p.0
- .text
- .align 2
- #
- # Only 256 (actually 225) bits of 2/pi are needed for VAX double
- # precision; this was determined by enumerating all the nearest
- # machine integer multiples of pi/2 using continued fractions.
- # (8a8d3673775b7ff7 required the most bits.) -S.McD
- #
- .long 0
- .long 0
- .long 0xaef1586d
- .long 0x9458eaf7
- .long 0x10e4107f
- .long 0xd8a5664f
- .long 0x4d377036
- .long 0x09d5f47d
- .long 0x91054a7f
- .long 0xbe60db93
- bits2opi:
- .long 0x00000028
- .long 0
- #
- # Note: wherever you see the word `octant', read `quadrant'.
- # Currently this code is set up for pi/2 argument reduction.
- # By uncommenting/commenting the appropriate lines, it will
- # also serve as a pi/4 argument reduction code.
- #
-
- # p.1
- # Trigred preforms argument reduction
- # for the trigonometric functions. It
- # takes one input argument, a D-format
- # number in r1/r0 . The magnitude of
- # the input argument must be greater
- # than or equal to 1/2 . Trigred produces
- # three results: the number of the octant
- # occupied by the argument, the reduced
- # argument, and an extension of the
- # reduced argument. The octant number is
- # returned in r0 . The reduced argument
- # is returned as a D-format number in
- # r2/r1 . An 8 bit extension of the
- # reduced argument is returned as an
- # F-format number in r3.
- # p.2
- trigred:
- #
- # Save the sign of the input argument.
- #
- movw r0,-(sp)
- #
- # Extract the exponent field.
- #
- extzv $7,$7,r0,r2
- #
- # Convert the fraction part of the input
- # argument into a quadword integer.
- #
- bicw2 $0xff80,r0
- bisb2 $0x80,r0 # -S.McD
- rotl $16,r0,r0
- rotl $16,r1,r1
- #
- # If r1 is negative, add 1 to r0 . This
- # adjustment is made so that the two's
- # complement multiplications done later
- # will produce unsigned results.
- #
- bgeq posmid
- incl r0
- posmid:
- # p.3
- #
- # Set r3 to the address of the first quadword
- # used to obtain the needed portion of 2/pi .
- # The address is longword aligned to ensure
- # efficient access.
- #
- ashl $-3,r2,r3
- bicb2 $3,r3
- subl3 r3,$bits2opi,r3
- #
- # Set r2 to the size of the shift needed to
- # obtain the correct portion of 2/pi .
- #
- bicb2 $0xe0,r2
- # p.4
- #
- # Move the needed 128 bits of 2/pi into
- # r11 - r8 . Adjust the numbers to allow
- # for unsigned multiplication.
- #
- ashq r2,(r3),r10
-
- subl2 $4,r3
- ashq r2,(r3),r9
- bgeq signoff1
- incl r11
- signoff1:
- subl2 $4,r3
- ashq r2,(r3),r8
- bgeq signoff2
- incl r10
- signoff2:
- subl2 $4,r3
- ashq r2,(r3),r7
- bgeq signoff3
- incl r9
- signoff3:
- # p.5
- #
- # Multiply the contents of r0/r1 by the
- # slice of 2/pi in r11 - r8 .
- #
- emul r0,r8,$0,r4
- emul r0,r9,r5,r5
- emul r0,r10,r6,r6
-
- emul r1,r8,$0,r7
- emul r1,r9,r8,r8
- emul r1,r10,r9,r9
- emul r1,r11,r10,r10
-
- addl2 r4,r8
- adwc r5,r9
- adwc r6,r10
- # p.6
- #
- # If there are more than five leading zeros
- # after the first two quotient bits or if there
- # are more than five leading ones after the first
- # two quotient bits, generate more fraction bits.
- # Otherwise, branch to code to produce the result.
- #
- bicl3 $0xc1ffffff,r10,r4
- beql more1
- cmpl $0x3e000000,r4
- bneq result
- more1:
- # p.7
- #
- # generate another 32 result bits.
- #
- subl2 $4,r3
- ashq r2,(r3),r5
- bgeq signoff4
-
- emul r1,r6,$0,r4
- addl2 r1,r5
- emul r0,r6,r5,r5
- addl2 r0,r6
- brb addbits1
-
- signoff4:
- emul r1,r6,$0,r4
- emul r0,r6,r5,r5
-
- addbits1:
- addl2 r5,r7
- adwc r6,r8
- adwc $0,r9
- adwc $0,r10
- # p.8
- #
- # Check for massive cancellation.
- #
- bicl3 $0xc0000000,r10,r6
- # bneq more2 -S.McD Test was backwards
- beql more2
- cmpl $0x3fffffff,r6
- bneq result
- more2:
- # p.9
- #
- # If massive cancellation has occurred,
- # generate another 24 result bits.
- # Testing has shown there will always be
- # enough bits after this point.
- #
- subl2 $4,r3
- ashq r2,(r3),r5
- bgeq signoff5
-
- emul r0,r6,r4,r5
- addl2 r0,r6
- brb addbits2
-
- signoff5:
- emul r0,r6,r4,r5
-
- addbits2:
- addl2 r6,r7
- adwc $0,r8
- adwc $0,r9
- adwc $0,r10
- # p.10
- #
- # The following code produces the reduced
- # argument from the product bits contained
- # in r10 - r7 .
- #
- result:
- #
- # Extract the octant number from r10 .
- #
- # extzv $29,$3,r10,r0 ...used for pi/4 reduction -S.McD
- extzv $30,$2,r10,r0
- #
- # Clear the octant bits in r10 .
- #
- # bicl2 $0xe0000000,r10 ...used for pi/4 reduction -S.McD
- bicl2 $0xc0000000,r10
- #
- # Zero the sign flag.
- #
- clrl r5
- # p.11
- #
- # Check to see if the fraction is greater than
- # or equal to one-half. If it is, add one
- # to the octant number, set the sign flag
- # on, and replace the fraction with 1 minus
- # the fraction.
- #
- # bitl $0x10000000,r10 ...used for pi/4 reduction -S.McD
- bitl $0x20000000,r10
- beql small
- incl r0
- incl r5
- # subl3 r10,$0x1fffffff,r10 ...used for pi/4 reduction -S.McD
- subl3 r10,$0x3fffffff,r10
- mcoml r9,r9
- mcoml r8,r8
- mcoml r7,r7
- small:
- # p.12
- #
- ## Test whether the first 29 bits of the ...used for pi/4 reduction -S.McD
- # Test whether the first 30 bits of the
- # fraction are zero.
- #
- tstl r10
- beql tiny
- #
- # Find the position of the first one bit in r10 .
- #
- cvtld r10,r1
- extzv $7,$7,r1,r1
- #
- # Compute the size of the shift needed.
- #
- subl3 r1,$32,r6
- #
- # Shift up the high order 64 bits of the
- # product.
- #
- ashq r6,r9,r10
- ashq r6,r8,r9
- brb mult
- # p.13
- #
- # Test to see if the sign bit of r9 is on.
- #
- tiny:
- tstl r9
- bgeq tinier
- #
- # If it is, shift the product bits up 32 bits.
- #
- movl $32,r6
- movq r8,r10
- tstl r10
- brb mult
- # p.14
- #
- # Test whether r9 is zero. It is probably
- # impossible for both r10 and r9 to be
- # zero, but until proven to be so, the test
- # must be made.
- #
- tinier:
- beql zero
- #
- # Find the position of the first one bit in r9 .
- #
- cvtld r9,r1
- extzv $7,$7,r1,r1
- #
- # Compute the size of the shift needed.
- #
- subl3 r1,$32,r1
- addl3 $32,r1,r6
- #
- # Shift up the high order 64 bits of the
- # product.
- #
- ashq r1,r8,r10
- ashq r1,r7,r9
- brb mult
- # p.15
- #
- # The following code sets the reduced
- # argument to zero.
- #
- zero:
- clrl r1
- clrl r2
- clrl r3
- brw return
- # p.16
- #
- # At this point, r0 contains the octant number,
- # r6 indicates the number of bits the fraction
- # has been shifted, r5 indicates the sign of
- # the fraction, r11/r10 contain the high order
- # 64 bits of the fraction, and the condition
- # codes indicate where the sign bit of r10
- # is on. The following code multiplies the
- # fraction by pi/2 .
- #
- mult:
- #
- # Save r11/r10 in r4/r1 . -S.McD
- movl r11,r4
- movl r10,r1
- #
- # If the sign bit of r10 is on, add 1 to r11 .
- #
- bgeq signoff6
- incl r11
- signoff6:
- # p.17
- #
- # Move pi/2 into r3/r2 .
- #
- movq $0xc90fdaa22168c235,r2
- #
- # Multiply the fraction by the portion of pi/2
- # in r2 .
- #
- emul r2,r10,$0,r7
- emul r2,r11,r8,r7
- #
- # Multiply the fraction by the portion of pi/2
- # in r3 .
- emul r3,r10,$0,r9
- emul r3,r11,r10,r10
- #
- # Add the product bits together.
- #
- addl2 r7,r9
- adwc r8,r10
- adwc $0,r11
- #
- # Compensate for not sign extending r8 above.-S.McD
- #
- tstl r8
- bgeq signoff6a
- decl r11
- signoff6a:
- #
- # Compensate for r11/r10 being unsigned. -S.McD
- #
- addl2 r2,r10
- adwc r3,r11
- #
- # Compensate for r3/r2 being unsigned. -S.McD
- #
- addl2 r1,r10
- adwc r4,r11
- # p.18
- #
- # If the sign bit of r11 is zero, shift the
- # product bits up one bit and increment r6 .
- #
- blss signon
- incl r6
- ashq $1,r10,r10
- tstl r9
- bgeq signoff7
- incl r10
- signoff7:
- signon:
- # p.19
- #
- # Shift the 56 most significant product
- # bits into r9/r8 . The sign extension
- # will be handled later.
- #
- ashq $-8,r10,r8
- #
- # Convert the low order 8 bits of r10
- # into an F-format number.
- #
- cvtbf r10,r3
- #
- # If the result of the conversion was
- # negative, add 1 to r9/r8 .
- #
- bgeq chop
- incl r8
- adwc $0,r9
- #
- # If r9 is now zero, branch to special
- # code to handle that possibility.
- #
- beql carryout
- chop:
- # p.20
- #
- # Convert the number in r9/r8 into
- # D-format number in r2/r1 .
- #
- rotl $16,r8,r2
- rotl $16,r9,r1
- #
- # Set the exponent field to the appropriate
- # value. Note that the extra bits created by
- # sign extension are now eliminated.
- #
- subw3 r6,$131,r6
- insv r6,$7,$9,r1
- #
- # Set the exponent field of the F-format
- # number in r3 to the appropriate value.
- #
- tstf r3
- beql return
- # extzv $7,$8,r3,r4 -S.McD
- extzv $7,$7,r3,r4
- addw2 r4,r6
- # subw2 $217,r6 -S.McD
- subw2 $64,r6
- insv r6,$7,$8,r3
- brb return
- # p.21
- #
- # The following code generates the appropriate
- # result for the unlikely possibility that
- # rounding the number in r9/r8 resulted in
- # a carry out.
- #
- carryout:
- clrl r1
- clrl r2
- subw3 r6,$132,r6
- insv r6,$7,$9,r1
- tstf r3
- beql return
- extzv $7,$8,r3,r4
- addw2 r4,r6
- subw2 $218,r6
- insv r6,$7,$8,r3
- # p.22
- #
- # The following code makes an needed
- # adjustments to the signs of the
- # results or to the octant number, and
- # then returns.
- #
- return:
- #
- # Test if the fraction was greater than or
- # equal to 1/2 . If so, negate the reduced
- # argument.
- #
- blbc r5,signoff8
- mnegf r1,r1
- mnegf r3,r3
- signoff8:
- # p.23
- #
- # If the original argument was negative,
- # negate the reduce argument and
- # adjust the octant number.
- #
- tstw (sp)+
- bgeq signoff9
- mnegf r1,r1
- mnegf r3,r3
- # subb3 r0,$8,r0 ...used for pi/4 reduction -S.McD
- subb3 r0,$4,r0
- signoff9:
- #
- # Clear all unneeded octant bits.
- #
- # bicb2 $0xf8,r0 ...used for pi/4 reduction -S.McD
- bicb2 $0xfc,r0
- #
- # Return.
- #
- rsb
-